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Abstracts

Мiхайлiкова Iрина Олегiвна

Чисельне моделювання фокусування електромагнiтних хвиль

дискретною лiнзою Люнебурга з графеновим елементом за до-

помогою збiжного алгоритму.

Ми розглядаємо характеристики фокусування, розсiювання та поглина-

ння плоскої хвилi та точкового джерела багатошарової цилiндричної лiн-

зи Люнебурга, частково вкритої конформною стрiчкою графену, у випад-

ку Н-поляризацiї. Кутова ширина стрiчки та розташування на поверхнi

є довiльною, а її поверхневий iмпеданс характеризується за допомогою

квантово-фiзичного формалiзму Кубо. Ми використовуємо математично

точну повнохвильову аналiтичну технiку регуляризацiї, яка базується на

iнверсiї статичної частини задачi. Це гарантує збiжнiсть отриманого чи-

слового алгоритму. Ми обчислюємо здатнiсть фокусування мiкролiнзи як

функцiю частоти в широкому дiапазонi до 30 THz. Цей аналiз показує, що

графенова стрiчка, розмiщена у фокальнiй зонi лiнзи Люнебурга, покращує

її здатнiсть до фокусування на певнiй резонанснiй частотi, що вiдповiдає

плазмоннiй модi стрiчки.

Ключовi слова: лiнза Люнебурга, графенова стрiчка, багатошаровий

дiелектричний цилiндр, метод аналiтичної регуляризацiї.
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Mikhailikova Iryna

Numerical modelling of electromagnetic wave focusing by a

graphene-assisted discrete Luneburg lens using a convergent al-

gorithm

We examine the focusing, scattering, and absorption characteristics of

a plane wave and point source incident on a multilayer cylindrical Luneb-

urg lens partially covered with a conformal graphene strip in the case of

H-polarization. The angular width of the strip is arbitrary and can vary, and

its surface impedance is characterized using the quantum-physical formalism

of Kubo theory. We employ a mathematically precise full-wave analytical

regularization technique based on the inversion of the static part of the prob-

lem. This ensures the convergence of the resulting numerical algorithm. We

calculate the focusing ability of the microlens as a function of frequency over

a wide range up to 30 THz. This analysis shows that the graphene strip

placed in the focal region of the Luneburg lens enhances its focusing abil-

ity at a specific resonant frequency, proportional to Q-factor of the plasmon

mode of the strip.

Key words: Luneburg Lens, graphene strip, layered dielectric cylinder,

method of analytical regularization.
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Introduction

Most of the results obtained during this research have been already pub-

lished in [1] or presented on conference papers [2], [3], [4], [5], [6], [7], [8].

This thesis was largely conducted under the supervision of Professor Sergii

V. Dukhopelnykov, whose valuable guidance and support contributed signif-

icantly to achieving the research objectives.

The Luneburg lens (LL) is a spherical or circular cylindrical dielectric lens

with a radius RM and relative dielectric permittivity that depends on the ra-

dial coordinate r as ε(r) = 2− (r/RM)2. At the lens surface, the permittivity

value equals 1. In the geometrical optics (GO) approximation, such a lens

has its focal point precisely on its outer surface [10]. In a realistic scenario,

an LL has a finite size and is discrete, for instance, concentrically layered [12],

with the outer layer of the lens exhibiting a non-negligible contrast with the

surrounding medium. When illuminated by plane waves, such lenses do not

produce focal points but rather finite-sized focal regions, which shrink to the

half-wavelength limit as the lens size increases. The focusing ability of the

lens can be evaluated as the maximum field magnitude (normalized to the

amplitude of the plane wave) and grows proportionally to kRM , where k is the

wavenumber. Note that in practical systems, the focusing ability deteriorates

whenever the frequency coincides with a high-Q whispering-gallery mode of

the outer layer of the lens. To shift these frequencies out of the operational

range, the lens must be optically large and have a dielectric permittivity of

the outer layer close to 1.

Without increasing the size, it is possible to enhance the focusing abil-

ity of a quasi-optical antenna using subwavelength resonant elements placed

5
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in the focal region. Recently, this possibility was demonstrated in [20] for

a simple dielectric lens antenna in the form of a uniform circular dielectric

rod decorated with a conformal graphene strip. The observed improvement

is attributed to the interaction between GO focusing, known as the ”elec-

tromagnetic jet effect” [21], [15], and the plasmonic mode resonances of the

graphene strip, provided the latter is located in the focal region.

Indeed, in the case of H-polarization, the graphene strip can support trans-

verse plasmon modes with low natural frequencies. Both the frequencies

and corresponding Q-factors can be controlled via the chemical potential of

graphene and the electron relaxation time, as predicted by the quantum-

physics Kubo theory [16].

Notably, plasmonic modes of dielectric scatterers with graphene elements

are an active area of research today [22], [19], [18], [23]. These studies show

that such composite scatterers are complex open resonators that support

both dielectric modes and plasmonic modes of the graphene elements.

However, it should be noted that the focusing ability of a layered LL and

the potential improvement using resonant graphene elements have not yet

been studied. On the other hand, the ability of an LL to collimate the main

beam of the radiation pattern when fed by a localized source placed on the

lens surface was the main focus of study in [12]. For this reason, LL-based

antennas are primarily known for their high directivity.

Nevertheless, another important application of an LL is its use as a cross-

section amplifier for backscattering (monostatic radar). In such applications,

a discrete LL is equipped with a conformal metallic (modeled as perfectly

electrically conducting, PEC) ”cap” [24], [25]. Unlike the more common

rectangular metallic reflector, such a radar target exhibits high reflectivity

over a wide range of incident angles.
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Replacing the PEC reflector with a graphene one, which supports plas-

monic modes, still results in enhanced scattering [5]. Furthermore, since

graphene has losses, this configuration demonstrates increased absorption,

particularly at the plasmon resonance frequency [6].

The main challenge in accurate full-wave modeling of such a composite

scatterer, like an LL with a conformal graphene strip, lies in the fact that

the lens has a quasi-optical size, while the width of the graphene strip, to

resonate at the lowest plasmon mode, must be deeply subwavelength. For

reliable analysis, more efficient, i.e., faster and more precise numerical meth-

ods are required than conventional numerical approximations and commer-

cial codes. Based on these considerations, we analyze the scattering from

a circular layered dielectric rod with a conformal graphene strip placed on

its outer surface using a code based on the method of analytical regulariza-

tion (MAR) [26], capable of overcoming the above-mentioned difficulties and

ensuring guaranteed convergence.

In his famous book [10], Luneburg demonstrated optically efficient use

of lenses of cylindrical or spherical shape that have the relative dielectric

permittivity depending on the radius as follows: . Hence, it is 2 in the center

and 1 at the lens surface. Such lenses are commonly referred to as Luneburg

lenses (LL). As shown in the geometrical optics (GO) approximation [10],

the largest value of the field amplitude, i.e. the focus, appears at the outer

boundary of the continuous-epsilon LL. In the real-life situations, LLs are

finite in size and discrete, for instance, concentrically layered [11], [12], [13],

[14]. When illuminated with the plane-waves, realistic lenses do not have

GO-like focal points. Instead, they display finite-size focal areas of elongated

shape, frequently called “electromagnetic jets.” If the lens optical size gets

larger, these finite focal areas shrink to the half-wavelength limit.
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In the emission regime, one of the main antenna characteristics is its direc-

tivity. For any finite-size lens, the directivity is known to grow linearly with

its electrical or optical size, in terms of the working wavelength. Well-known

side effect of making LL layered instead of continuous-epsilon is the appear-

ance of the high-Q periodic whispering-gallery mode (WGM) resonances at

high frequencies. Caused by finite optical contrast between the outer layer

and the free space, these resonances spoil the LL directivity [12]. To shift

WGMs off the operational range, a layered lens should have the outer layer

permittivity as close to 1 as possible.

In the reception regime, the main characteristic of a quasioptical antennas

is its focusing ability (FA). A chance to raise FA appears with the aid of

the resonance elements, of sub-wavelength size with respect to the free-space

wavelength, placed into the focal area. Recently, this opportunity has been

demonstrated in [15] for the uniform circular dielectric rod and for layered

LL [1] decorated with a conformal graphene strip. Indeed, in the case of the

H (TE) polarization, the strip of graphene supports the transversal plasmon

modes with low natural frequencies and moderate Q-factors. As graphene’s

conductivity depends on its chemical potential and electron relaxation time

(see the quantum-physics Kubo theory [16]), the plasmon-mode characteris-

tics are electrically tunable, that is attractive for applications. Due to the

tunability, plasmon modes of dielectric scatterers with graphene elements are

actively studied today [17], [18], [19].

In [1], the focusing ability of the Luneburg lens and the influence of a

graphene strip located in the focal region of this lens in the reception regime,

i.e. in the case of a plane wave incidence, were investigated. This study

showed higher efficiency of the lens compared to a simple dielectric rod.

Therefore, it is interesting to study the effect of graphene strip in the
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reciprocal situation of the layered LL, fed by a line-current source. Note that

such effect has been previously studied for a uniform dielectric rod with a

graphene strip excited by a line source [15].

The accurate full-wave modeling of such a composite scatterer as quasi-

optical size LL with deeply sub-wavelength conformal strip of graphene is a

true challenge. For a trusted analysis, such a lens requires more efficient,

i.e. faster and more accurate, computational techniques than conventional

numerical approximations and commercial codes. Therefore, we use the code

based on the hypersingular integral equation (HIE) discretized with the Nys-

trom method [15]. Such a technique is completely grounded mathematically

and its convergence is guaranteed by the proven theorems. As filling in the

final matrix equation does not involve any numerical integrations, it is very

fast and provides the accuracy, controlled by the order of discretization.

Dissemination of results. The results of the work were presented and

discussed at the following international conferences and symposia:

• IEEE International Conferences on Electronics and Nanotechnologies

(ELNANO), Kyiv (2022);

• European Microwave Conferences (EuMC): Milan (2022), Berlin (2023),

Paris (2024);

• European Conferences on Antennas and Propagation (EuCAP), Flo-

rence (2023), Glasgow (2024);

• IEEE Ukrainian Microwave Week (UkrMW), Kharkiv (2022);

• International Symposium IEEE Antennas and Propagation (AP-S), Flo-

rence, (2024).

Publications. The results of research have been published in 9 refereed

papers indexed in Scopus, including 1 paper in international journals [1] and
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8 papers in the proceedings of international conferences [2] - [9].

The research within this thesis has been recognized by the IEEE Antennas

and Propagation Society and the IEEE Photonics Society.



Chapter 1

Geometry and problem formulation

(a) (b)

Figure 1.1: Cross sections of the bare discrete M-layer concentric Luneburg
lens decorated with a conformal strip of graphene illuminated by the plane
wave (a) and excited by the-point source (b). The strip is shown as a black
arc centered at ϕ = 0.

1.1. Case of a plane wave

Let us consider the case of a plane H-polarized monochromatic wave

(e−iωt) incident on a circular dielectric rod that models a Luneburg lens and

is partially covered with a graphene strip. Cylindrical coordinates (r, ϕ, z)

are introduced, where the z-axis coincides with the cylinder’s axis. The cylin-

der’s radius is denoted as R, and the angular width of the graphene strip is

2δ. Additionally, the gap width is denoted as 2θ = 2π − 2δ.

In the case of H-polarization, the electromagnetic field consists of the

following components: magnetic (0, 0, Hz) and electric (Er, Eϕ, 0). Here, Rp

and εp represent the outer radius and relative dielectric permittivity of the

p-th layer, where p = 1, . . . ,M . The angular width of the graphene strip is

11
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2δ, while its physical width in cross-section is L = 2δRM . Consequently, the

gap has an angular width of 2θ.

The black arrow in Fig. 1.1 indicates the propagation direction of the

plane wave, while ϕ0 denotes the incidence angle measured relative to the

x-axis.

The following two-dimensional wave-scattering problem is posed: we aim

to find the function that satisfies the given conditions.

(i) the Helmholtz equation in the domain bounded by the circles of radii

Rj and Rj+1, j = 1, 2, ...,M + 1 i.e.,

∆H(j)
z (r, ϕ) + (kj)

2H(j)
z (r, ϕ) = 0 (1.1)

with the piecewise wavenumber kj

kj = (
ω

c
)
√
εj = kαj (1.2)

(ii) the dual conditions at r = RM , on the arc with graphene covering L =

{r = RM , |ϕ| ≤ δ}:

E
(M)
ϕ + E

(M+1)
ϕ = 2ZZ0(H

(M)
z −H(M+1)

z ), E
(M)
ϕ = E

(M+1)
ϕ (1.3)

and on the arc without graphene S = {r = RM , |ϕ| ≥ δ}:

H(M)
z = H(M+1)

z , E
(M)
ϕ = E

(M+1)
ϕ (1.4)

where M+1 represents the region beyond the lens,

(iii) the tangential components continuity conditions at r = Rp, p =

1, 2, ...,M − 1,

(iv) the Sommerfeld radiation condition at infinity,

(v) the local power finiteness condition. As known, these conditions guar-
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antee the uniqueness of the boundary-value problem solution for all real-

valued k.

E
(j)
ϕ = − Z0

ikεj

∂

∂r
H(j)

z (1.5)

The incident plane wave can be represented through angular Fourier series:

H inc
z = eikx = eikr cosϕ =

∞∑
n=−∞

inJn(kr)e
inϕ (1.6)

We will look for the total field, which can also be represented through an

angular Fourier series in the following form:

Hz =


H(M+1)

z +H inc
z , r ≥ RM

H(j)
z , Rj−1 < r < Rj, 1 < j < M

H(1)
z r < R1

(1.7)

where H(M+1)
z is the field in the domain outside the lens, r ≥ RM

H(M+1)
z =

∞∑
n=−∞

dnHn(kM+1r)e
inϕ/H ′

n(kM+1RM), (1.8)

and H(1)
z is the field in the central domain of the lens, r < R1

H(1)
z =

∞∑
n=−∞

cnJn(k1r)e
inϕ/J ′

n(k1R1), (1.9)

and H(p)
z is the field in the layer domain, Rp−1 < r < Rp, p = 2, ...,M

H(p)
z =

∞∑
n=−∞

[apnJn(kpr)/J
′
n(kpRp) + bpnHn(kpr)/H

′
n(kpRp)]e

inϕ. (1.10)

Based on the continuity condition at the boundary, the following formula
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is obtained: −b2nL
2
n = cnG

1
n

a2nK
2
n = cnΓ

1
n

(1.11)

and this system results from the boundary condition between the layers:apnG
p
n + bpnS

p
n = −bp+1

n Lp+1
n

apnΓ
p
n + bpnD

p
n = ap+1

n Kp+1
n

(1.12)

where apn, b
p
n, c

p
n, d

p
n are the unknown coefficients that we need to determine.

And Lp
n, K

p
n, Γ

p
n, S

p
n, D

p
n, G

p
n can be represented as follows:

Lp
n = 2i(πkRp−1J

′
n(αkpRp−1)H

′
n(kαpRp))

−1 (1.13)

Kp
n = 2i(πkRp−1J

′
n(kαpRp)H

′
n(kαpRp−1))

−1 (1.14)

Γp
n = [αp(Jn(kαpRp)/J

′
n(kαpRp))− αp+1(Hn(kαp+1Rp)/H

′
n(kαp+1Rp))]

(1.15)

Sp
n = [αp(Hn(kαpRp)/H

′
n(kαpRp))− αp+1(Jn(kαp+1Rp)/J

′
n(kαp+1Rp))]

(1.16)

Dp
n = [αp(Hn(kαpRp)/H

′
n(kαpRp))− αp+1(Hn(kαp+1Rp)/H

′
n(kαp+1Rp))]

(1.17)

Gp
n = [αp(Jn(kαpRp)/J

′
n(kαpRp))−αp+1(Jn(kαp+1Rp)/J

′
n(kαp+1Rp))] (1.18)

dn + f ′
n = aMn + bMn (1.19)

fn = inJn(kRM) (1.20)

f ′
n = inkJ ′

n(kRM) (1.21)
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The dual series equation was obtained in the form:
∞∑

n=−∞
Ane

inϕ = 0, |ϕ| ≤ θ

∞∑
n=−∞

(AnWn − iZAn)e
inϕ =

∞∑
n=−∞

Fne
inϕ, θ ≤ |ϕ| ≤ π

(1.22)

An = aMn [αM(Jn(kαMRM)/J ′
n(kαMRM))− (Hn(kRM)/H ′

n(kRM))]

-fn + bMn [αM(Hn(kαMRM)/H ′
n(kαMRM))

-(Hn(kRM)/H ′
n(kRM))] + f ′

n(Hn(kRM)/H ′
n(kRM))(1.23)

Fn = [inJ ′
n(kRM)(Hn(kRM)/H ′

n(kRM))− inJn(kRM)]Wn (1.24)

Wn = B1|n|+ o(|n|−1) (1.25)

B1 = [kRM(εM + εM+1)]
−1 (1.26)

A dual series equation of this form enables the use of the method of analyt-

ical regularization for Riemann-Hilbert problem, transforming the problem

into an infinite system of algebraic equations:

Am =
+∞∑

n=−∞
[(|n| −B−1

1 Wn + iB−1
1 Z)An +B−1

1 Fn]Tnm(θ) (1.27)

where Tnm could be represented as in [26]:

Tnm(θ) = (−1)m+n[Pm(u)Pn−1(u)−Pm−1(u)Pn(u)]/2(m− n), m ̸= n (1.28)
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T00(θ) = −ln
(1 + cosθ)

2
(1.29)

Tmm(θ) =
1

2|m|
[1 +

|m|∑
s=1

ts(u)Ps−1(u)], m ̸= 0 (1.30)

where t0 = 1, and ts(u) = Ps(u)− 2uPs−1(u) + Ps−2(u).

Using [26], it can be shown that equation 1.27 represents a second-kind

Fredholm matrix equation in the space of numerical sequences l2. This indi-

cates that equation 1.27 can be solved in the l2 space for all real values of the

wave number k (as purely real eigenvalues of k are prohibited by the Poynting

theorem). Furthermore, the Fredholm nature of equation 1.27 ensures that

solutions to truncated analogs of this equation converge to the exact solution

of the infinite equation as the truncation order increases, i.e., as N −→ ∞,

by the l2 norm. This implies that for a limited number of components (within

a specific truncation order), the solution will be approximate. However, as

N grows large enough, it will approach the exact solution.

Therefore, based on these considerations, it can be confirmed that equation

1.27 is equivalent to the original boundary value problem (i)-(v).

1.2. Case of a point source

An additional important task is the investigation of waves excited by point

sources.

By substituting the point source—i.e., replacing formula 1.6 with a formula

in the following form:

H inc
z = H1

0(k|r⃗ − r⃗s|) (1.31)
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is emitted by the magnetic line current, placed at the point r⃗s.

We arrive at a similar system to (1.22), where the function F takes the

form

Fn = [f ′
n(Hn(kRM)/H ′

n(kRM))− fn]Wn (1.32)

.

Using Graf’s formula we obtained fn = Jn(krs)Hn(kr), rs < r and

fn = Jn(kr)Hn(krs), rs > r.



Chapter 2

Numerical results

The computational error is expressed as a function of the truncation num-

ber, N , in the following form:

eACS(N) = |SACS(N)− SACS(Nmax)|/SACS(Nmax) (2.1)

where SACS denotes the absorption cross-section. This parameter indicates

the power lost in the graphene strip of the scatterer and can be determined

from the Optical Theorem as shown below

SACS(N) = −(4/k)ReDH(ϕ0, N)− STSCS(N) (2.2)

where the far-field angular scattering pattern is expressed as:

DH(ϕ,N) =
+N∑

n=−N

dn(−i)n(H ′
n)

−1einϕ (2.3)

and the total scattering cross-section is given by the following expression:

STSCS(N) = (4/k)
+N∑

n=−N

|dn|2|H ′
n|−2 (2.4)

The lens-with-strip focusing ability (FA) is defined as the field magnitude

from inside, i.e., at:”

FA = |
+N∑

n=−N

[aMn
αMJn(kMRM)

J ′
n(kMRM)

+ bMn
αMHn(kMRM)

H ′
n(kMRM)

]einϕ0| (2.5)

18
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The panels shown in Figures 2.1 to the Figures 2.11 have been previously

published and are discussed in detail in [1].

For the illustration of the focusing abilities, we constructed reliefs that

depend on frequency and coordinates.

In Figures 2.2 to 2.4, the red spots correspond to the frequencies at which

plasmon modes are excited on the graphene strip.

In Figure 2.5, to demonstrate the influence of the number of lens layers, we

plotted the curves. It is clearly visible that starting from five layers, adding

additional layers has a minimal effect on the frequency deviations and the

maximum focusing values

Figures 2.6 and 2.7 shows the amplitude near-field patterns and their

zooms at the frequency of the first (P1) and third (P3) plasmon mode reso-

nance.

Figure 2.1: The computational error described in equation 2.1 plotted as a
function of the matrix truncation number, for Nmax = 100
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(a) (b)

Figure 2.2: The near-field magnitude along the x-axis for graphene strip
angular widths of 2δ = 1◦ (a) and 2δ = 5◦ (b). The plane wave propagates
along the symmetry line of the Luneburg lens, which has M = 2 layers.

(a) (b)

Figure 2.3: The near-field magnitude along the x-axis for graphene strip
angular widths of 2δ = 1◦ (a) and 2δ = 5◦ (b). The plane wave propagates
along the symmetry line of the Luneburg lens, which has M = 5 layers.
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(a) (b)

Figure 2.4: The near-field magnitude along the x-axis for graphene strip
angular widths of 2δ = 1◦ (a) and 2δ = 5◦ (b). The plane wave propagates
along the symmetry line of the Luneburg lens, which has M = 7 layers.

(a) (b)

Figure 2.5: Focusing ability versus frequency for graphene strip angular
widths of 2δ = 1◦ (a) and 2δ = 5◦ (b), under symmetric plane-wave exci-
tation, with a matrix truncation order of N = 160
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(a) (b)

Figure 2.6: The amplitude near-field patterns (a) and their zooms (b) at the
frequency of the first plasmon mode (P1) resonance, with a matrix truncation
order of N = 160 and a graphene strip angular width of 2δ = 5◦.

(a) (b)

Figure 2.7: The amplitude near-field patterns (a) and their zooms (b) at the
frequency of the third plasmon mode (P3) resonance, with a matrix trunca-
tion order of N = 160 and a graphene strip angular width of 2δ = 5◦.
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(a) (b)

Figure 2.8: The color map of focusing ability versus frequency and chemical
potential (a), and the plots of focusing ability versus frequency (b) for a
graphene strip with an angular width of 2δ = 5◦ under symmetric plane-
wave excitation, ϕ0 = 0. The white dashed line corresponds to the analytical
formula of the first plasmon mode [1].

(a) (b)

Figure 2.9: The near-field magnitude along the x-axis for a graphene strip
with an angular width of 2δ = 5◦ versus the plane-wave incidence angle, ϕ0,
for a number of layers M = 7.
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(a) (b)

Figure 2.10: The near-field magnitude along the x-axis for a graphene strip
with an angular width of 2δ = 1◦ versus the plane-wave incidence angle, ϕ0,
for a number of layers M = 7.

(a) (b)

Figure 2.11: Focusing ability versus plane wave incidence angle for graphene
strip angular widths of 2δ = 1◦ (a) and 2δ = 5◦ (b), at the frequency corre-
sponding to the first plasmon mode (P1) resonance of the strip.



Chapter 3

Numerical results for the case of a

point source
In the case of a point source how it was mentioned before, it is necessary

to analyze the radiation power and directivity.

Further we compute and discuss several characteristics, which depend on

the frequency and size of the graphene strip. In the far zone, the total field

is a cylindrical wave

Hz(r⃗) = Φ(ϕ)(1/πkr)1/2eikr (3.1)

with the following parts of the angular radiation pattern,

Φ(ϕ) = Φin(ϕ) + Φsc(ϕ),Φin(ϕ) = eikr0 cos (ϕ−ϕ0) (3.2)

Φsc(ϕ) =
+∞∑

n=−∞
(−i)ndne

inϕ/H ′
n(kRM) (3.3)

The total radiation power is, by definition,

Prad = (πkZ0)
−1

∫ 2π

0

|Φ(ϕ)|2dϕ (3.4)

After algebraic transformations the integral is reduced to the sum over the

found unknown coefficients dn. Note that the radiated power equals to the

radiation conductance times the square of the magnetic current in the line

source.

The absorption power consists of two parts, corresponding to the power,
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absorbed in the lossy graphene strip,

P grph
abs = ReZR

∫ +δ

−δ

|v(ϕ)|2dϕ (3.5)

where v(ϕ) is the current on the graphene strip.

And the power absorbed in a lossy lens layer, if it is present. If the lens is

assumed lossless, the radiation efficiency is the ratio,

η = Prad/(Prad + P grph
abs ) (3.6)

In our calculations, we use the radiation power of the magnetic line in the

free space, P0 = 2(kZ0)
−1 , for the normalization of radiated power of the

line-fed layered LL.

Now we demonstrate the results, calculated for two angular sizes of

graphene strip and for different numbers of layered lens layers. As can be

seen from the emission and absorption power plots, there is a sharp increase

in the powers when the source frequency approaches the real parts of the nat-

ural frequencies of the strip plasmon modes. Besides, the black curves in Fig.

3(a) show periodic peaks above 12 THz each time the frequency coincides

with the natural frequency of a high-Q WGM.
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(a) (b)

Figure 3.1: Spectra of normalized radiation versus the frequency for different
numbers of layers. Lens has radius RM = 50µm. Graphene strip angular
width is 2δ = 5o (a) and 2δ = 1o (b). The source is on the x-axis at the
distance Ds = 50nm from the lens.

(a) (b)

Figure 3.2: Absorption resistances (or powers) versus the frequency for differ-
ent numbers of layers. Lens has radius RM = 50µm. Graphene strip angular
width is 2δ = 5o (a) and 2δ = 1o (b). The source is on the x-axis at the
distance Ds = 50nm from the lens.
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(a) (b)

Figure 3.3: Radiation efficiency versus the frequency for different numbers of
layers. Lens has radius RM = 50µm. Graphene strip angular width is 2δ =
5o (a) and 2δ = 1o (b). The source is on the x-axis at the distance Ds =
50nm from the lens.

(a) (b)

Figure 3.4: In-resonance normalized far field emission patterns corresponding
to Fig.3.1 and Fig.3.2. Graphene strip angular width is 2δ = 5o (a) and 2δ =
1o (b).



Conclusions

In the course of this work, materials related to the scattering and focusing

properties of the Luneburg lens were analyzed and examined. The physical

properties of graphene structures were explored. A double system of equa-

tions was derived using the boundary problem method, which, through the

application of the method of analytical regularization to Riemann-Hilbert

problems, was reduced to an infinite system of algebraic equations. A system

of Fredholm second kind was obtained. A program was developed based on

the system after truncation. Various characteristics, including focusing prop-

erties, absorption characteristics, and scattering characteristics were com-

puted. One of the key aspects of the work was demonstrating the conver-

gence of the method. The results obtained in this Master Thesis can be used

for modeling antenna structures based on the Luneburg lens and graphene

elements.
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