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Abstracts

MixaitrikoBa Ipuaa OuseriBHa

YuceabHe MojeioBaHHA (POKYyCyBaHHS €JIE€KTPOMArHiTHUX XBUJIb
JANCKPeTHOIO JIiH3010 JIfonedbypra 3 rpadeHoBuM ejeMeHTOM 3a J10-

IMTOMOT'0I0 30i1?KHOT'O aJITOPUTMY.

Mu posriistaeMo XapaKTepucTuKu POKYCYBaHHSI, PO3CIIOBAHHS Ta MOTJINHA~
HHS TIJIOCKOT XBUJI Ta TOYKOBOTO JIzKepeJsia 0araToliapoBol IUIIHIPIIHOI JIiH-
3u JIroHebypra, 9acTKOBO BKPUTOI KOH(OPMHOIO CTPIUKOIO I'padeHy, y BHUIIa/I-
ky H-monsgpuzamii. Kyrosa mmupunna cTpidku Ta po3TalllyBaHHs Ha TOBEPXHI
€ JIOBLIBHOIO, & 11 TIOBEPXHEBUIl IMIIe/IaHC XapPaKTEPU3YETHCA 3a JIOMOMOTOIO
KBaHTOBO-diznaHoro gopmasizmy Kybo. Mu BUKOpHCTOBYEMO MaTeMaTHIHO
TOYHY TOBHOXBUJILOBY aHAJITUYHY TEXHIKY peryjisdpusaliil, gka 06a3yeTbcsd Ha
iHBepcil craTndHol JacTuHM 3ajad4i. Ile rapanTye 30iKHICTH OTPUMAHOIO YH-
cJ0Boro ajropurmy. Mu obdmcoeMo 31aTHICTL POKYCYBAHHA MIKPOJIH3U SIK
dyHKIIi0 gacToTn B mupokoMy miarazoni g0 30 THz. Ileit anaiiz nokasye, 1o
rpacdeHoBa cTpivuka, po3milieHa y boKaabHiil 30H1 j1iH3u JI1oHeOypra, mokparrye
i1 3aTHicTb J10 POKYCYyBaHHS Ha IIeBHIII Pe30HAHCHIN 4acToTi, 1110 BiJIOBIIa€
IJIA3MOHHIN MOJII CTPIYUKM.

Kirouosi caoBa: jninza JlioneOypra, rpadenosa cTpiuka, HaraTonapoBuil

JIIeJIEKTPUIHUAI TMIIHP, METO/, aHAJITUYIHOI peryJ/isapusaliii.



Mikhailikova Iryna

Numerical modelling of electromagnetic wave focusing by a
graphene-assisted discrete Luneburg lens using a convergent al-

gorithm

We examine the focusing, scattering, and absorption characteristics of
a plane wave and point source incident on a multilayer cylindrical Luneb-
urg lens partially covered with a conformal graphene strip in the case of
H-polarization. The angular width of the strip is arbitrary and can vary, and
its surface impedance is characterized using the quantum-physical formalism
of Kubo theory. We employ a mathematically precise full-wave analytical
regularization technique based on the inversion of the static part of the prob-
lem. This ensures the convergence of the resulting numerical algorithm. We
calculate the focusing ability of the microlens as a function of frequency over
a wide range up to 30 THz. This analysis shows that the graphene strip
placed in the focal region of the Luneburg lens enhances its focusing abil-
ity at a specific resonant frequency, proportional to Q-factor of the plasmon
mode of the strip.

Key words: Luneburg Lens, graphene strip, layered dielectric cylinder,

method of analytical regularization.
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Introduction

Most of the results obtained during this research have been already pub-
lished in [1] or presented on conference papers [2], [3], [4], [5], [6], [7], [8].
This thesis was largely conducted under the supervision of Professor Sergii
V. Dukhopelnykov, whose valuable guidance and support contributed signif-
icantly to achieving the research objectives.

The Luneburg lens (LL) is a spherical or circular cylindrical dielectric lens
with a radius Rj; and relative dielectric permittivity that depends on the ra-
dial coordinate r as e(r) = 2 — (r/Ryr)?. At the lens surface, the permittivity
value equals 1. In the geometrical optics (GO) approximation, such a lens
has its focal point precisely on its outer surface [10]. In a realistic scenario,
an LL has a finite size and is discrete, for instance, concentrically layered [12],
with the outer layer of the lens exhibiting a non-negligible contrast with the
surrounding medium. When illuminated by plane waves, such lenses do not
produce focal points but rather finite-sized focal regions, which shrink to the
half-wavelength limit as the lens size increases. The focusing ability of the
lens can be evaluated as the maximum field magnitude (normalized to the
amplitude of the plane wave) and grows proportionally to kR, where k is the
wavenumber. Note that in practical systems, the focusing ability deteriorates
whenever the frequency coincides with a high-Q whispering-gallery mode of
the outer layer of the lens. To shift these frequencies out of the operational
range, the lens must be optically large and have a dielectric permittivity of
the outer layer close to 1.

Without increasing the size, it is possible to enhance the focusing abil-

ity of a quasi-optical antenna using subwavelength resonant elements placed

5
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in the focal region. Recently, this possibility was demonstrated in [20] for
a simple dielectric lens antenna in the form of a uniform circular dielectric
rod decorated with a conformal graphene strip. The observed improvement
is attributed to the interaction between GO focusing, known as the ”elec-
tromagnetic jet effect” [21], [15], and the plasmonic mode resonances of the
graphene strip, provided the latter is located in the focal region.

Indeed, in the case of H-polarization, the graphene strip can support trans-
verse plasmon modes with low natural frequencies. Both the frequencies
and corresponding Q-factors can be controlled via the chemical potential of
graphene and the electron relaxation time, as predicted by the quantum-
physics Kubo theory [16].

Notably, plasmonic modes of dielectric scatterers with graphene elements
are an active area of research today [22], [19], [18], [23]. These studies show
that such composite scatterers are complex open resonators that support
both dielectric modes and plasmonic modes of the graphene elements.

However, it should be noted that the focusing ability of a layered LL and
the potential improvement using resonant graphene elements have not yet
been studied. On the other hand, the ability of an LL to collimate the main
beam of the radiation pattern when fed by a localized source placed on the
lens surface was the main focus of study in [12]. For this reason, LL-based
antennas are primarily known for their high directivity.

Nevertheless, another important application of an LL is its use as a cross-
section amplifier for backscattering (monostatic radar). In such applications,
a discrete LL is equipped with a conformal metallic (modeled as perfectly
electrically conducting, PEC) ”cap” [24], [25]. Unlike the more common
rectangular metallic reflector, such a radar target exhibits high reflectivity

over a wide range of incident angles.
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Replacing the PEC reflector with a graphene one, which supports plas-
monic modes, still results in enhanced scattering [5]. Furthermore, since
graphene has losses, this configuration demonstrates increased absorption,
particularly at the plasmon resonance frequency [6].

The main challenge in accurate full-wave modeling of such a composite
scatterer, like an LL with a conformal graphene strip, lies in the fact that
the lens has a quasi-optical size, while the width of the graphene strip, to
resonate at the lowest plasmon mode, must be deeply subwavelength. For
reliable analysis, more efficient, i.e., faster and more precise numerical meth-
ods are required than conventional numerical approximations and commer-
cial codes. Based on these considerations, we analyze the scattering from
a circular layered dielectric rod with a conformal graphene strip placed on
its outer surface using a code based on the method of analytical regulariza-
tion (MAR) [26], capable of overcoming the above-mentioned difficulties and
ensuring guaranteed convergence.

In his famous book [10], Luneburg demonstrated optically efficient use
of lenses of cylindrical or spherical shape that have the relative dielectric
permittivity depending on the radius as follows: . Hence, it is 2 in the center
and 1 at the lens surface. Such lenses are commonly referred to as Luneburg
lenses (LL). As shown in the geometrical optics (GO) approximation [10],
the largest value of the field amplitude, i.e. the focus, appears at the outer
boundary of the continuous-epsilon LL. In the real-life situations, LLs are
finite in size and discrete, for instance, concentrically layered [11], [12], [13],
[14].  When illuminated with the plane-waves, realistic lenses do not have
GO-like focal points. Instead, they display finite-size focal areas of elongated
shape, frequently called “electromagnetic jets.” If the lens optical size gets

larger, these finite focal areas shrink to the half-wavelength limit.
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In the emission regime, one of the main antenna characteristics is its direc-
tivity. For any finite-size lens, the directivity is known to grow linearly with
its electrical or optical size, in terms of the working wavelength. Well-known
side effect of making LL layered instead of continuous-epsilon is the appear-
ance of the high-Q periodic whispering-gallery mode (WGM) resonances at
high frequencies. Caused by finite optical contrast between the outer layer
and the free space, these resonances spoil the LL directivity [12]. To shift
WGMs off the operational range, a layered lens should have the outer layer
permittivity as close to 1 as possible.

In the reception regime, the main characteristic of a quasioptical antennas
is its focusing ability (FA). A chance to raise FA appears with the aid of
the resonance elements, of sub-wavelength size with respect to the free-space
wavelength, placed into the focal area. Recently, this opportunity has been
demonstrated in [15] for the uniform circular dielectric rod and for layered
LL [1] decorated with a conformal graphene strip. Indeed, in the case of the
H (TE) polarization, the strip of graphene supports the transversal plasmon
modes with low natural frequencies and moderate Q-factors. As graphene’s
conductivity depends on its chemical potential and electron relaxation time
(see the quantum-physics Kubo theory [16]), the plasmon-mode characteris-
tics are electrically tunable, that is attractive for applications. Due to the
tunability, plasmon modes of dielectric scatterers with graphene elements are
actively studied today [17], [18], [19].

In [1], the focusing ability of the Luneburg lens and the influence of a
graphene strip located in the focal region of this lens in the reception regime,
i.e. in the case of a plane wave incidence, were investigated. This study
showed higher efficiency of the lens compared to a simple dielectric rod.

Therefore, it is interesting to study the effect of graphene strip in the
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reciprocal situation of the layered LL, fed by a line-current source. Note that
such effect has been previously studied for a uniform dielectric rod with a
graphene strip excited by a line source [15].

The accurate full-wave modeling of such a composite scatterer as quasi-
optical size LL with deeply sub-wavelength conformal strip of graphene is a
true challenge. For a trusted analysis, such a lens requires more efficient,
i.e. faster and more accurate, computational techniques than conventional
numerical approximations and commercial codes. Therefore, we use the code
based on the hypersingular integral equation (HIE) discretized with the Nys-
trom method [15]. Such a technique is completely grounded mathematically
and its convergence is guaranteed by the proven theorems. As filling in the
final matrix equation does not involve any numerical integrations, it is very
fast and provides the accuracy, controlled by the order of discretization.

Dissemination of results. The results of the work were presented and

discussed at the following international conferences and symposia:

e I[IEEE International Conferences on Electronics and Nanotechnologies

(ELNANO), Kyiv (2022);

e European Microwave Conferences (EuMC): Milan (2022), Berlin (2023),
Paris (2024);

e European Conferences on Antennas and Propagation (EuCAP), Flo-

rence (2023), Glasgow (2024);
e IEEE Ukrainian Microwave Week (UkrMW), Kharkiv (2022);

e International Symposium IEEE Antennas and Propagation (AP-S), Flo-
rence, (2024).

Publications. The results of research have been published in 9 refereed

papers indexed in Scopus, including 1 paper in international journals [1] and
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8 papers in the proceedings of international conferences [2] - [9].
The research within this thesis has been recognized by the IEEE Antennas
and Propagation Society and the IEEE Photonics Society.



Chapter 1

Geometry and problem formulation

(a) (b)

Figure 1.1: Cross sections of the bare discrete M-layer concentric Luneburg
lens decorated with a conformal strip of graphene illuminated by the plane
wave (a) and excited by the-point source (b). The strip is shown as a black
arc centered at ¢ = 0.

1.1. Case of a plane wave

Let us consider the case of a plane H-polarized monochromatic wave
(e=™" incident on a circular dielectric rod that models a Luneburg lens and
is partially covered with a graphene strip. Cylindrical coordinates (r, ¢, z)
are introduced, where the z-axis coincides with the cylinder’s axis. The cylin-
der’s radius is denoted as R, and the angular width of the graphene strip is
26. Additionally, the gap width is denoted as 20 = 27 — 2.

In the case of H-polarization, the electromagnetic field consists of the
following components: magnetic (0,0, H,) and electric (E,, Ey,0). Here, R,
and ¢, represent the outer radius and relative dielectric permittivity of the

p-th layer, where p = 1,..., M. The angular width of the graphene strip is

11
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20, while its physical width in cross-section is L = 20 R);. Consequently, the
gap has an angular width of 26.

The black arrow in Fig. 1.1 indicates the propagation direction of the
plane wave, while ¢y denotes the incidence angle measured relative to the
T-axis.

The following two-dimensional wave-scattering problem is posed: we aim
to find the function that satisfies the given conditions.

(i) the Helmholtz equation in the domain bounded by the circles of radii
Rjand Rjy1,7=1,2,...,.M +11ie,

AHY(r,¢) + (k;)*HY (r,¢) = 0 (1.1)

with the piecewise wavenumber &;

w
ki = ()vE; = hay (1.2)
(ii) the dual conditions at » = R/, on the arc with graphene covering L =

{7“ - RM7 ‘qb‘ < 5}

0D

M) | p(M+1) 2ZZO(H§M) _ H§M+1))’ p

¢ ¢

and on the arc without graphene S = {r = Ry, |¢p| > 0}:

M M+1
HM = gt 00 = gty (1.4)

where M+1 represents the region beyond the lens,

(iii) the tangential components continuity conditions at r = R,, p =
1,2, M —1,

(iv) the Sommerfeld radiation condition at infinity,

(v) the local power finiteness condition. As known, these conditions guar-
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antee the uniqueness of the boundary-value problem solution for all real-

valued k.

(1.5)

The incident plane wave can be represented through angular Fourier series:

Hé’nc _ piku _ gikrcos¢ _ Z z’”Jn(kr)emqs (1.6)

n=—oo

We will look for the total field, which can also be represented through an
angular Fourier series in the following form:

;

HéM—’_l) +Hmc r > RM

z

H, =4 HY, Ri1<r<Rjl<j<M (1.7)

H(l) r< Ry

where H §M +1) is the field in the domain outside the lens, r > Ry

HOM = N™ dy Hy(kyrsar)e™ / Hy (kara Rag), (18)

n=—oo

and HY is the field in the central domain of the lens, r < R;

o

Hz(l) = Z Can(le)ein(b/J;L(klRl), (19)

n=—oo

and ng) is the field in the layer domain, R, 1 <r < R,,p=2,.... M

Hz(:p) = i [} T (kpr) [ T3 (KpRp) + ban(kpr)/Hrlz(kpRp)]em- (1.10)

n=—0oo

Based on the continuity condition at the boundary, the following formula
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is obtained:

CRI2 =Gl
(1.11)

27-2 _ 7l
a, K, =c,I',

and this system results from the boundary condition between the layers:

A GP + B Sh = bt ot
(1.12)
anl} + b, D)y = af T K

where ab, b, P dP are the unknown coefficients that we need to determine.

And LP, KP TP SP DP GP can be represented as follows:

P = 2i(nkR, 1J(ak,R, 1) H] (ka,R,)) (1.13)
K? = 2i(nkR, 1J (ka,R,) H] (ka,R, 1)) (1.14)
I = [O‘p(Jn(k@pRp)/J;L(kO‘pRp)) - O‘p+1(Hn(kapHRp)/Hr/L(kO‘pHRp))]
(1.15)
Sh = [O‘p(Hn(kO‘pRp)/Hrlz(kO‘pRp)) - @p+1(Jn(kap+1Rp)/J7/z(kap+1Rp))]
(1.16)
Db = [y, (Hy (kaypRy) [ Hy (kaypRy)) — cypia (Hy (ko Ry) / H (ka1 Ry))]
(1.17)
G = [ap(Jn(keyRy) [ T (ke Ry)) — i (Tu(koy 1 Ry) [ T (ka1 Ry))] (1.18)

dp + fh = aM + oM (1.19)

f=i"kJ (kRy) (1.21)
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The dual series equation was obtained in the form:

( o0
D A =0,]¢| <6
< nzogoo o
> (AW, —iZA)e™ = Y Fe™0< ¢ <7
\ N=—00 n=—oo

(1.22)

Ay = ay [an (Jn(karRar) [ Ty (keny Rar)) — (Hy(kRag)/Hy (kRa))]

£, + b [aps (H, (kans Rag) JH. (kos Rag))
-(Hn(kRar)/H,,(kRar))] + fr,.(Ho(kRy)/Hy (kRyy))(1.23)

Fy = [i"J (kRag) (Ho(kRag) [ H. (kRag)) — i Ju(kRar) W, (1.24)
W, = Bi|n| + o(|n| ™) (1.25)
By = [kRM(gM + 5M+1)]_1 (126)

A dual series equation of this form enables the use of the method of analyt-
ical regularization for Riemann-Hilbert problem, transforming the problem

into an infinite system of algebraic equations:

400
A, = Z [(|n| — By'W,, +iB'2) A, + By F, )T (0) (1.27)

n=—oo

where T,,,,, could be represented as in [26]:
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Too(6) = —zn(lzﬂ (1.29)
|
T (0) = ﬁu + ) t(u) Py (u)], m#0 (1.30)

where to = 1, and t5(u) = Ps(u) — 2uPs_1(u) + Ps_o(u).

Using [26], it can be shown that equation 1.27 represents a second-kind
Fredholm matrix equation in the space of numerical sequences . This indi-
cates that equation 1.27 can be solved in the [s space for all real values of the
wave number k (as purely real eigenvalues of k are prohibited by the Poynting
theorem). Furthermore, the Fredholm nature of equation 1.27 ensures that
solutions to truncated analogs of this equation converge to the exact solution
of the infinite equation as the truncation order increases, i.e., as N — 00,
by the I norm. This implies that for a limited number of components (within
a specific truncation order), the solution will be approximate. However, as
N grows large enough, it will approach the exact solution.

Therefore, based on these considerations, it can be confirmed that equation

1.27 is equivalent to the original boundary value problem (i)-(v).

1.2. Case of a point source

An additional important task is the investigation of waves excited by point
sources.
By substituting the point source—i.e., replacing formula 1.6 with a formula

in the following form:

H" = Hy (k|7 —73]) (1.31)
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is emitted by the magnetic line current, placed at the point 5.
We arrive at a similar system to (1.22), where the function F takes the

form

Using Graf’s formula we obtained f,, = J,,(krs)H,(kr), rs < r and
fn = Jn(kT>Hn(k7“5), Te >T.



Chapter 2

Numerical results

The computational error is expressed as a function of the truncation num-

ber, N, in the following form:

eacs(N) = [Sacs(N) = Sacs(Nmaz)|/Sacs(Nmaz) (2.1)

where S 405 denotes the absorption cross-section. This parameter indicates
the power lost in the graphene strip of the scatterer and can be determined

from the Optical Theorem as shown below

SACS(N) = —(4/k)R6DH(¢0,N) — STgcs(N) (2.2)

where the far-field angular scattering pattern is expressed as:

+N
Dy(¢,N) = p  du(=i)"(H,) 'e™ (2.3)
n=—N
and the total scattering cross-section is given by the following expression:

+N

Srscs(N) = (4/k) Y |df*|Hy |72 (2.4)

n=—N
The lens-with-strip focusing ability (FA) is defined as the field magnitude

from inside, i.e., at:”

+N
FA=| Y ot Rn) v onr B Eai o)) ingny g 5)

Sy (karRar) " Hy(kyRu)

n=—N

18
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The panels shown in Figures 2.1 to the Figures 2.11 have been previously
published and are discussed in detail in [1].

For the illustration of the focusing abilities, we constructed reliefs that
depend on frequency and coordinates.

In Figures 2.2 to 2.4, the red spots correspond to the frequencies at which
plasmon modes are excited on the graphene strip.

In Figure 2.5, to demonstrate the influence of the number of lens layers, we
plotted the curves. It is clearly visible that starting from five layers, adding
additional layers has a minimal effect on the frequency deviations and the
maximum focusing values

Figures 2.6 and 2.7 shows the amplitude near-field patterns and their
zooms at the frequency of the first (P1) and third (P3) plasmon mode reso-

nance.

Figure 2.1: The computational error described in equation 2.1 plotted as a
function of the matrix truncation number, for N,,,,. = 100
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(a) (b)

Figure 2.2: The near-field magnitude along the x-axis for graphene strip
angular widths of 26 = 1° (a) and 20 = 5° (b). The plane wave propagates
along the symmetry line of the Luneburg lens, which has M = 2 layers.

(a) (b)

Figure 2.3: The near-field magnitude along the x-axis for graphene strip
angular widths of 26 = 1° (a) and 20 = 5° (b). The plane wave propagates
along the symmetry line of the Luneburg lens, which has M = 5 layers.
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(a) (b)

Figure 2.4: The near-field magnitude along the x-axis for graphene strip
angular widths of 26 = 1° (a) and 20 = 5° (b). The plane wave propagates
along the symmetry line of the Luneburg lens, which has M = 7 layers.

(a) (b)

Figure 2.5: Focusing ability versus frequency for graphene strip angular
widths of 20 = 1° (a) and 26 = 5° (b), under symmetric plane-wave exci-
tation, with a matrix truncation order of N = 160
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(a) (b)

Figure 2.6: The amplitude near-field patterns (a) and their zooms (b) at the
frequency of the first plasmon mode (P1) resonance, with a matrix truncation
order of N = 160 and a graphene strip angular width of 20 = 5°.

(a) (b)

Figure 2.7: The amplitude near-field patterns (a) and their zooms (b) at the
frequency of the third plasmon mode (P3) resonance, with a matrix trunca-
tion order of N = 160 and a graphene strip angular width of 26 = 5°.
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(a) (b)

Figure 2.8: The color map of focusing ability versus frequency and chemical
potential (a), and the plots of focusing ability versus frequency (b) for a
graphene strip with an angular width of 20 = 5° under symmetric plane-
wave excitation, ¢y = 0. The white dashed line corresponds to the analytical
formula of the first plasmon mode [1].

(a) (b)

Figure 2.9: The near-field magnitude along the x-axis for a graphene strip
with an angular width of 20 = 5° versus the plane-wave incidence angle, ¢,
for a number of layers M = 7.
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(a) (b)

Figure 2.10: The near-field magnitude along the x-axis for a graphene strip
with an angular width of 20 = 1° versus the plane-wave incidence angle, ¢,
for a number of layers M = 7.

(a) (b)

Figure 2.11: Focusing ability versus plane wave incidence angle for graphene
strip angular widths of 26 = 1° (a) and 26 = 5° (b), at the frequency corre-
sponding to the first plasmon mode (P1) resonance of the strip.



Chapter 3

Numerical results for the case of a

point source

In the case of a point source how it was mentioned before, it is necessary

to analyze the radiation power and directivity.

Further we compute and discuss several characteristics, which depend on

the frequency and size of the graphene strip. In the far zone, the total field

is a cylindrical wave

H.(7) = ®(¢)(1/mkr)!2e™

with the following parts of the angular radiation pattern,

(I)(QS) - (I)m<¢) + (I)sc<¢)7 (I)m<¢) = Gikro cos (¢—¢o)
+00

(I)sc(gb) - Z <_Z)ndn€m¢/H7,1(kRM')

n=—oo

The total radiation power is, by definition,

2
Proq = (1kZy) ™ /0 |D(p)|*dep

(3.1)

(3.2)

(3.3)

(3.4)

After algebraic transformations the integral is reduced to the sum over the

found unknown coefficients d,,. Note that the radiated power equals to the

radiation conductance times the square of the magnetic current in the line

source.

The absorption power consists of two parts, corresponding to the power,

25
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absorbed in the lossy graphene strip,

+5
Py = ReZR [ (o) (3.5)

where v(¢) is the current on the graphene strip.
And the power absorbed in a lossy lens layer, if it is present. If the lens is

assumed lossless, the radiation efficiency is the ratio,

0 = Prad/ (Praa + P5!") (3.6)

abs

In our calculations, we use the radiation power of the magnetic line in the
free space, Py = 2(kZy)~" , for the normalization of radiated power of the
line-fed layered LL.

Now we demonstrate the results, calculated for two angular sizes of
graphene strip and for different numbers of layered lens layers. As can be
seen from the emission and absorption power plots, there is a sharp increase
in the powers when the source frequency approaches the real parts of the nat-
ural frequencies of the strip plasmon modes. Besides, the black curves in Fig.
3(a) show periodic peaks above 12 THz each time the frequency coincides

with the natural frequency of a high-QQ WGM.
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(a) (b)

Figure 3.1: Spectra of normalized radiation versus the frequency for different
numbers of layers. Lens has radius Ry; = 50um. Graphene strip angular
width is 26 = 5% (a) and 20 = 1° (b). The source is on the x-axis at the

distance Ds = 50nm from the lens.

(a) (b)

Figure 3.2: Absorption resistances (or powers) versus the frequency for differ-
ent numbers of layers. Lens has radius Rj; = 50um. Graphene strip angular
width is 20 = 5? (a) and 20 = 1? (b). The source is on the x-axis at the
distance D, = 50nm from the lens.
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(a) (b)

Figure 3.3: Radiation efficiency versus the frequency for different numbers of
layers. Lens has radius Rj; = 50um. Graphene strip angular width is 20 =
5% (a) and 2§ = 1° (b). The source is on the x-axis at the distance D; =
50nm from the lens.

(a) (b)

Figure 3.4: In-resonance normalized far field emission patterns corresponding
to Fig.3.1 and Fig.3.2. Graphene strip angular width is 26 = 5° (a) and 2§ =
1° (b).



Conclusions

In the course of this work, materials related to the scattering and focusing
properties of the Luneburg lens were analyzed and examined. The physical
properties of graphene structures were explored. A double system of equa-
tions was derived using the boundary problem method, which, through the
application of the method of analytical regularization to Riemann-Hilbert
problems, was reduced to an infinite system of algebraic equations. A system
of Fredholm second kind was obtained. A program was developed based on
the system after truncation. Various characteristics, including focusing prop-
erties, absorption characteristics, and scattering characteristics were com-
puted. One of the key aspects of the work was demonstrating the conver-
gence of the method. The results obtained in this Master Thesis can be used
for modeling antenna structures based on the Luneburg lens and graphene

elements.
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